为解决邮政安全监管部门在对大量申诉事件原因进行分类汇总时耗时耗力、效率低下等问题,提出应用Word2vec和TextCNN模型,实现对大量快递申诉文本事件进行申诉原因自动分类。首先对自采集的申诉文本做预处理,申诉原因分为延误、投递、丢失短少、损毁、其他共五种类型,再使用Word2vec进行词向量的转换,构建TextCNN模型,对其进行训练得到申诉文本的分类模型。在真实数据上的实验结果表明,该方法能够对申诉文本进行有效分类,准确率达到94.05%,召回率93.03%,F1值0.9325。